Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

نویسندگان

  • Xiangwei Xing
  • Kefeng Ji
  • Huanxin Zou
  • Jixiang Sun
چکیده

As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Geniş Açılı Radarda Görüntü Oluşturma ve Yönbağımlılık Tespiti için Seyrek Sinyal Temsiline Dayalı bir Yaklaşım A Sparse Signal Representation-based Approach to Image Formation and Anisotropy Determination in Wide-Angle Radar∗

We consider the problem of jointly forming images and determining anisotropy from wide-angle synthetic aperture radar (SAR) measurements. Conventional SAR image formation techniques assume isotropic scattering, which is not valid with wide-angle apertures. We present a method based on a sparse representation of aspect-dependent scattering with an overcomplete dictionary composed of elements wit...

متن کامل

Target Recognition in SAR Images Based on Information-Decoupled Representation

Abstract: This paper proposes an automatic target recognition (ATR) method for synthetic aperture radar (SAR) images based on information-decoupled representation. A typical SAR image of a ground target can be divided into three parts: target region, shadow and background. From the aspect of SAR target recognition, the target region and shadow contain discriminative information. However, they a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014